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EXISTENCE OF POSITIVE WEAK SOLUTIONS FOR A

CLASS OF SINGULAR ELLIPTIC EQUATIONS

LI XIA, JINGNA LI, AND ZHENG’AN YAO

Abstract. In this note, we are concerned with positive solutions
for a class of singular elliptic equations. Under some conditions, we
obtain weak solutions for the equations by elliptic regularization
method and sub-super solution method.

1. Introduction

In this note, we are concerned with following singular elliptic prob-

lem:

z′′ + β
r
z′ − γ

z
|z′|2 + λ(r) = 0, z > 0, r ∈ (0, 1), (1)

subject to the Dirichlet boundary conditions:

z(0) = z(1) = 0, (2)

where β > 0, γ > β + 1 are constants, c < λ(r) ∈ L∞(0, 1) for some

positive constant c.

In [1], the authors studied the problem

z′′ +
N − 1

r
z′ − γ

|z′|2

z
− 1 = 0, r ∈ (0, 1),

z(1) = 0, z′(0) = 0.

Here, N ≥ 2 is the dimension of R
N space. Applying ordinary differen-

tial equation techniques, they obtained a decreasing positive solution

which, subsequently, was used in [2] to study some properties of solu-

tions for a class of degenerate parabolic equations (see [3] for further

information). In [4], Xia and Yao studied following problem

z′′ + β
r
z′ − γ

z
|z′|2 + f(r, z) = 0, z > 0, r ∈ (0, 1),
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subject to the following four-point boundary conditions:

z(0) = z(1) = 0,
z′(0) = z′(1) = 0.

Here f(r, z) satisfies the following condition:

(H1) f(r, z) ∈ C1([0, 1]× [0,∞), [c0,∞)) for sufficiently small c0 > 0,

and f is non-increasing with respect to z.

They showed that the above problem has at least one classical solution.

For more details of equations dependent of first derivative, see [5-12]

and the references therein.

Problem (1) is closely related with some equations. For example, if

β = N − 1, suppose λ(x) is a radially symmetric function with respect

to x ∈ B1 ⊂ R
N (N ≥ 2), then problem (1) is related with following

problem:

−∆z + γ |∇z|2

z
= λ(x), z > 0, x ∈ B1 \ {0},

z = 0, x ∈ ∂B1 ∪ {0},
(3)

where B1 is the unit ball in R
N . Note that solutions of (1)(2) are

radial solutions of problem (3) with r = |x|, which may be transformed

into following problem with infinite boundaries if we set γ = 1(or γ =
q+1

q
, q > 1), z = e−w(or z = w−q, q > 1, w > 0):

∆w = λ(x)g(w), w > 0, x ∈ B1 \ {0},

w = ∞, x ∈ ∂B1 ∪ {0}.
(4)

where, g(w) = ew(or g(w) = wq, q > 1). The last condition means that

w(x) → ∞ uniformly as x ∈ B1, d(x) = dist(x, ∂B1) → 0 or |x| →

0. And we call its solution as explosive solution or “large solution”.

Much attentions have been focused on problems (3)(4) and some related

problems, which may have a singularity, we refer readers to [7-12] and

the references therein.

For g(w) = ew or g(w) = wq(q > 1), problem (4) plays an important

role in the theory of Riemann surfaces of constant negative curvatures

and automorphic function, arises in the study of high speed diffusion
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problem, some geometric problems and the electric potential in a glow-

ing hollow metal body. For details of the two classical problems, we

refer readers to [7] and the references therein.

In this note, we shall discuss weak solutions of (1)(2), using regu-

larization method and constructing sub-solution and super-solution for

problem (1)(2) to obtain the existence result.

2. Main result and the proof

Definition 2.1. A function z is called a solution for (1)(2), if z ∈

C1/2[0, 1], z(r) > 0 in (0, 1), rβ|z′|2 ∈ L1(0, 1), z′(0) and z′(1) exist,

z(r) satisfies (2) and
∫

0

1(

z′ψ′ − β
z′

r
ψ + γ

|z′|2

z
ψ − λ(r)ψ

)

dr = 0,

for any ψ ∈ C∞
0 (0, 1), the space of smooth functions χ : (0, 1) → R

with compact support in (0, 1).

The main result of this note is as follows.

Theorem 2.1. Under the hypothesis of this note, problem (1)(2) ad-

mits at least a solution.

To prove Theorem 2.1, we use the classical method of regularization.

Precisely, we consider

z′′δ + β
r+δ

z′δ −
γ

zδ+δ2 |z
′
δ|

2 + λ(r) = 0, zδ > 0, r ∈ (0, 1), (5)

subject to conditions (2).

We call v a sub-(sup-) solution for (5), if v ≥ 0, v ∈ L∞(0, 1) ∩

W 1,2(0, 1), and for any 0 ≤ ψ ∈ L∞(0, 1) ∩W 1,2
0 (0, 1) there holds

∫

0

1(

v′ψ′ −
β

r + δ
v′ψ +

γ

v + δ2
|v′|2ψ − λ(r)ψ

)

dr ≤ (≥)0.

v is called a weak solution for (5)(2), if v is both a sub-solution and

a sup-solution for (5) and satisfies (2). By [13](Th 9.1, Chapter 4),

problem (5)(2) admits a solution 0 < zδ ∈W 1,2
0 (0, 1) ∩ L∞(0, 1).
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Lemma 2.1. Assume that z1 and z2 are sub-solution and sup-solution

for (5) respectively, z1(0) ≤ z2(0), z1(1) ≤ z2(1). Then

z1 ≤ z2 a.e. in (0, 1).

Proof. For any 0 ≤ ψ ∈ L∞(0, 1) ∩W 1,2
0 (0, 1) there holds

∫

0

1(

z′2(ψ
′ −

β

r + δ
ψ) +

γ

z2 + δ2
|z′2|

2ψ − λ(r)ψ
)

dr ≥ 0,
∫

0

1(

z′1(ψ
′ −

β

r + δ
ψ) +

γ

z1 + δ2
|z′1|

2ψ − λ(r)ψ
)

dr ≤ 0,

(6)

Let f(s) : (0,∞) → R be defined by

f(s) =

{

(1 − γ)−1s1−γ, γ 6= 1,

ln s, γ = 1.

Set u1 = z1 + δ2, u2 = z2 + δ2. Since u1, u2 ∈ L∞(0, 1)∩W 1,2(0, 1), f(s)

is increasing and u2 ≥ u1 at points {0, 1}, we have (f(u1) − f(u2))+ ∈

L∞(0, 1) ∩W 1,2
0 (0, 1). This and u1, u2 ≥ δ2 > 0 in (0, 1) imply ψuj

=

(r + δ)βu−γ
j (f(u1) − f(u2))+ ∈ L∞(0, 1) ∩W 1,2

0 (0, 1), j = 1, 2. So ψu2

and ψu1
can be chosen in (6) as test functions. Hence

∫

0

1

(r + δ)βu−γ
2

[

u′2(f(u1) − f(u2))
′
+ − λ(r)(f(u1) − f(u2))+

]

dr ≥ 0,
∫

0

1

(r + δ)βu−γ
1

[

u′1(f(u1) − f(u2))
′
+ − λ(r)(f(u1) − f(u2))+

]

dr ≤ 0,

which imply that
∫

0

1

(r + δ)β
[

(f ′(u1) − f ′(u2))(f(u1) − f(u2))
′
+

+λ(r)(h(u1) − h(u2))(f(u1) − f(u2))+

]

dr ≤ 0,
(7)

where h : (0,∞) → R− is defined by h(s) = −s−γ .

It is easy to see that
∫

0

1

(r + δ)β(f ′(u1) − f ′(u2)) · (f(u1) − f(u2))
′
+dr ≥ 0,

which and (7) yield that
∫

0

1

(r + δ)βλ(r)(h(u1) − h(u2))(f(u1) − f(u2))+dr ≤ 0.
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But this and λ(r) > 0 in (0, 1) imply that (h(u1) − h(u2))(f(u1) −

f(u2))+ = 0 a.e. in (0, 1), i.e., u2 ≥ u1 a.e. in (0, 1). The proof is

completed.

Let ω = 1

2
(r − r2) be the unique classical solution for problem

−z′′ = 1, r ∈ (0, 1),

z(0) = z(1) = 0.

Lemma 2.2. Let z = C0ω
2, z1δ = C1(r + δ)2, z2δ = C1(1 + δ − r)2,

zδ = min{z1δ, z2δ}, where C0 and C1 ≥ 1 are some positive constants.

Then

z ≤ zδ ≤ zδ a.e. in (0, 1), for all δ ∈ (0, 1). (8)

Proof. Note that if z is a sub-solution and zi,δ(i = 1, 2) are both sup-

solutions for (5), it follows from Lemma 2.1 that z ≤ zδ ≤ zδ. The

proof of former conclusion follows similarly from Lemma 2.1 in [4].

Hence Lemma 2.2 is proved.

Lemma 2.3. For all δ ∈ (0, 1), we have
∫

0

1

(r + δ)β|z′δ|
2dr ≤ C,

where C is a constant independent of δ.

Proof. Multiplying (5) by (r + δ)βzδ, integrating over (0, 1) and inte-

grating by parts, we have
∫

0

1

(r + δ)β[1 + γ
zδ

zδ + δ2
]|z′δ|

2dr

=

∫

0

1

(r + δ)βλ(r)zδdr ≤ C.

(9)

The last inequality follows from (8) and 0 < λ(r) ∈ L∞(0, 1).

From Lemma 2.3, for any 0 < σ < 1 there holds
∫

σ

1

|z′δ|
2dr ≤ Cσ,

where Cσ is a constant dependent of σ. Going to a subsequence of zδ

if necessary, denoted by zδn
, we assert that there exists a nonnegative
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function z ∈ L∞(0, 1) ∩W 1,2(σ, 1) such that, as δ = δn → 0,

zδ → z a.e. in [0, 1],
z′δ ⇀ z′ weakly in L2(σ, 1).

(10)
(11)

Since W 1,2(σ, 1) →֒ C1/2[σ, 1] and zδ is uniformly bounded with re-

spect to δ, from Arzela-Ascoli theorem and diagonal sequential process,

we further claim that, as δ = δn → 0,

zδ → z uniformly in [σ, 1], (12)

and z(1) = 0.

On the other hand, from (8)(10) we obtain that

C0ω
2 ≤ z ≤ C1 min{r2, (1 − r)2} in (0, 1). (13)

This implies that z has Hölder continuity near r = 0 and lim
r→0

z(r) = 0.

Define z(0) = 0, we see that z satisfies (2), z ∈ C
1

2 [0, 1] and

zδ → z in [0, 1], (14)

as δ = δn → 0.

From Lemma 2.3 and (11), we also have

(r + δ)β/2z′δ ⇀ rβ/2z′ weakly in L2(0, 1),
rβ/2z′δ ⇀ rβ/2z′ weakly in L2(0, 1).

(15)

as δ = δn → 0. From (15) and weak lower semi-continuity of the norm

in L2(0, 1), it follows that
∫

0

1

rβ|z′|2dr ≤ C, (16)

where C is independent of δ.

Next we show that z satisfies the integral identity of Definition 2.1.

Lemma 2.4. For any ξ ∈ C∞
0 (0, 1), as δ = δn → 0, we have

(1)

∫

0

1

rβ+1ξ|z′δ − z′|2dr → 0;

(2)

∫

0

1

rβ+1ξ||z′δ|
2 − |z′|2|dr → 0;

(3)

∫

0

1

rβ+1ξ
∣

∣

∣

z′δ
r + δ

−
z

r

∣

∣

∣
dr → 0;
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(4)

∫

0

1

rβ+1ξ
∣

∣

∣

|z′δ|
2

zδ + δ2
−

|z′|2

z

∣

∣

∣
dr → 0.

Proof. From (14) and Lemma 2.3, for any fixed δ ∈ (0, 1), ϕδ =

rβ+1ξ(zδ − z) ∈ L∞(0, 1) ∩W 1,2
0 (0, 1). Thus we may take ϕδ as a test

function in (6) to obtain
∫

0

1

rβ+1λ(r)ξ(zδ − z)dr

= γ

∫

0

1

rβ+1ξ
|z′δ|

2

zδ + δ2
(zδ − z)dr +

∫

0

1

rβ+1ξz′δ(z
′
δ − z′)dr

+

∫

0

1

(β + 1 −
rβ

r + δ
)rβξz′δ(zδ − z)dr +

∫

0

1

rβ+1ξ′z′δ(zδ − z)dr

= I1 + I2 + I3 + I4.

Since ξ ∈ C∞
0 (0, 1), supp ξ ⊂⊂ (0, 1). From which, Lemma 2.3,

(8)(12) and ω > 0 on supp ξ ⊂ [0, 1], there hold

I1 ≤ C

∫

supp ξ

rβξz−1

δ |z′δ|
2|zδ − z|dr

≤ C max
r∈supp ξ

(ω−2|zδ − z|)
(

∫

supp ξ

rβ|z′δ|
2dr

)

→ 0, (δ = δn → 0).

Now we estimate I3, I4. Using the similar method as in I1, we obtain

from Hölder’s inequality that

I3 ≤ (β + 1)

∫

0

1

rβξ|z′δ||zδ − z|dr → 0,

I4 ≤

∫

0

1

rβ|ξ′||z′δ||zδ − z|dr → 0,

as δ = δn → 0.

From Lebesgue’s dominated convergence theorem, we have
∫

0

1

rβ+1λ(r)ξ(zδ − z)dr → 0, (δ = δn → 0),

hence

I2 =

∫

0

1

rβ+1ξz′δ(z
′
δ − z′)dr

=

∫

0

1

rβ+1ξ|z′δ − z′|2 +

∫

0

1

rβ+1ξz′(z′δ − z′)dr

= I21 + I22 → 0, (δ = δn → 0).

EJQTDE, 2011 No. 69, p. 7



From (15) and Hölder’s inequality, we have as δ = δn → 0

I22 =

∫

0

1

rβ+1ξz′(z′δ − z′)dr

≤ C

∫

0

1

rβ/2z′ · rβ/2(z′δ − z′)dr → 0.

Thus (1) follows.

Now we prove (2). From Hölder’s inequality, Lemma 2.3, (16) and

conclusion (1), we deduce

∫

0

1

rβ+1ξ||z′δ|
2 − |z′|2|dr

≤ 2

∫

0

1

rβ+1ξ(|z′δ| + |z′|)|z′δ − z′|dr

≤ 2
(

∫

0

1

rβ+1ξ(|z′δ| + |z′|)2dr
)1/2

·
(

∫

0

1

rβ+1ξ|z′δ − z′|2dr
)1/2

→ 0, (δ = δn → 0),

and (2) follows.

Next we prove (3). Indeed we have

∫

0

1

rβ+1ξ
∣

∣

∣

z′δ
r + δ

−
z

r

∣

∣

∣
dr

≤

∫

0

1 r

r + δ
rβξ|z′δ − z′|dr +

∫

0

1

rβξ
∣

∣

∣

r

r + δ
− 1

∣

∣

∣
|z′|dr

= J1 + J2.

From conclusion (1) and Hölder’s inequality, we have

J1 ≤ C
(

∫

0

1

rβ+1ξ|z′δ − z′|2dr
)1/2

→ 0, (δ = δn → 0).

Since r
r+δ

→ 1 a.e. in (0, 1)(δ = δn → 0), by similar proof of I3, we

have J2 → 0. Hence (3) follows.

Finally we need to prove (4). At first, we obtain

∫

0

1

rβ+1ξ
∣

∣

∣

|z′δ|
2

zδ + δ2
−

|z′|2

z

∣

∣

∣
dr

=

∫

0

1

rβ+1ξ
||z′δ|

2 − |z′|2|

zδ + δ2
dr +

∫

0

1

rβ+1ξ|z′|2
∣

∣

∣

1

zδ + δ2
−

1

z

∣

∣

∣
dr

= K1 +K2.
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From conclusion (2), (8), there holds

K1 ≤ C max
r∈supp ξ

(ω)−2

∫

supp ξ

rβ+1||z′δ|
2 − |z′|2|dr → 0,

as δ = δn → 0. From (12) we have 1

zδ+δ2 → 1

z
uniformly in [σ, 1], for

any 0 < σ < 1/2. Similarly, we deduce

K2 ≤ C max
r∈supp ξ

∣

∣

∣

1

zδ + δ2
−

1

z

∣

∣

∣
·

∫

supp ξ

rβ+1ξ|z′|2dr → 0,

as δ = δn → 0. Thus (4) is true.

From Lemma 2.4, we see that z satisfies the integral identity of Defi-

nition 2.1. To finish the proof of Theorem 2.1, it remains to prove that

z′(0) = z′(1) = 0. From (13), we have

C0

ω2

r
≤
z(r)

r
≤ C1r, r ∈ (0,

1

2
),

C0

ω2

1 − r
≤

z(r)

1 − r
≤ C1(1 − r), r ∈ (

1

2
, 1).

Note that ω = 1

2
(r − r2), we obtain

lim
r→0+

z(r)

r
= lim

r→1−

z(r)

1 − r
= 0,

i.e. z′(0) = z′(1) = 0.
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